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Abstract

Nattokinase, from the Japanese fermented food natto, is a protease with

fibrinolytic activity that can thus degrade conventional blood clots. In

some cases, however, including in Long COVID, fibrinogen can

polymerise into an anomalous amyloid form to create clots that are

resistant to normal fibrinolysis and that we refer to as fibrinaloid

microclots. These can be detected with the fluorogenic stain thioflavin T.

We describe an automated microscopic technique for the quantification

of fibrinaloid microclot formation, which also allows the kinetics of their

formation and aggregation to be recorded. We also here show that

recombinant nattokinase is effective at degrading the fibrinaloid

microclots in vitro. Flow conditions, mimicked by shaking, increase the

size of the clots via aggregation. Overall, this work adds to the otherwise

largely anecdotal evidence, that we review, that nattokinase might be

anticipated to have value as part of therapeutic treatments for

individuals with Long COVID and related disorders that involve

fibrinaloid microclots.
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1 Introduction

Thrombosis, the blocking of blood vessels by blood

clots, along with the related thrombo-inflammation

and thromboembolism, is a chief cause of

cardiovascular disease [1-6]. Consequently anything

that can promote safe anti-coagulation or fibrinolytic

activity is likely to have therapeutic potential (e.g.,

[7-15]).

Despite having to pass through the gut wall [24-31],

nattokinase is orally available (and this can be

improved [32-34]), is considered a major contributor

to the purported health benefits of natto

[21,27,35-60], not least in cardiovascular diseas

Nattō (usually rendered natto) is a Japanese food 

made via the fermentation of soy beans using the 

Gram-positive organism Bacillus subtilis var natto 

[16-20]. It has been widely consumed for over 2000 

years, and is considered safe [21]. The proteolytic 

activity of natto was detected in 1906 [22] and its 

fibrinolytic activity in 1925 [23]. However, it was not 

until 1987 [21] that an enzyme exhibiting these 

activities was purified from natto; in spite of it being a 

protease it was termed nattokinase [21].

e

[27,28,36,38,39,41,53,61-80], and is itself

recognised as safe [64,81,82].

The experimental 3D structure of nattokinase, which is

a serine protease related to subtilisin, is available [83,84],

and it may also be produced via purification [85-88] or

(as here) recombinantly [44,67,68,72,89-100].

Although not our prime focus in this paper, it is also

known to cleave plasminogen activator inhibitor I

[101], to have antiplatelet [102], anti-inflammatory

[77], and anti-hypertensive [65,103,104] activities,

and to show neuroprotective [105] and post-stroke

benefits [106] as well, when dosed adequately, as

having anti-lipidaemic effects [69].

Following earlier work using electron microscopy (e.g.,

[107-110]), we discovered that fibrinogen could

polymerise or clot into an anomalous, amyloid form of

fibrin (e.g., [111-118]) that exactly reflected the clots

seen in both the electron microscope [119] and in

bright field optical microscopy [120]. As with prions

and other amyloid forms of proteins [112,121], that

are often highly resistant to proteolysis (e.g.,

[122,123]), the existence of these ‘fibrinaloid’

microclots implies their comparative resistance to

normal fibrinolysis [124,125], with their precise

structures [126] being affected by other small and

macromolecules and ions that they may have bound

[111,117,127-133]. The varieties of stable

macrostates into which a given amyloidogenic

sequence can fold (even under the same conditions

[134,135]) are referred to as different ‘strains’

[136-146] or ‘polymorphisms’ [147-158], and in some

cases are sufficiently stable (i.e., kinetically isolated

from other macrostates) that they are even heritable

[136,159-165]. Homo- and hetero-polymerisation

and their catalysis are then referred to, respectively,

as (self-)‘seeding’ [154,166-180] and ‘cross-seeding’

[167,181-188]. More recently, we have established

the prevalence of these fibrinaloid microclots in

post-viral diseases such as Long COVID [120,189-192]

(and see confirmation by others in [193,194]) and

ME/CFS (myalgic encephalopathy/chronic fatigue

syndrome) [195,196]. The lower amyloidogenicity of

omicron versus earlier variants of SARS-CoV-2 is also

reflected in its lower virulence [197], implying that

these microclots are on the aetiological pathway of the

disease, and they can explain many symptoms [198],

including fatigue [199], post-exertional symptom

exacerbation [200], autoantibody generation [121]

and Postural Orthostatic Tachycardia Syndrome (POTS)

[201]. Fibrin amyloid microclots also occur during

sepsis [202], while amyloid deposits are also observed

in the skeletal muscles of those with Long COVID

[203]. Overall, this ability of fibrinaloid microclots to

provide a mechanistic explanation of multiple

phenomena is consistent with the ‘explanatory
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Although nattokinase preparations are widely

available commercially, and as noted above they are

considered to have significant therapeutic value,

including in Long COVID [271,272], their exact

contents are uncertain, and so we decided that it was

best to create and use purified, recombinant material

J. Exp. Clin. Appl. Chin. Med. 2024, 5(4), 30-55

coherence’ view of science [204-207]. In common 

with other amyloid proteins [112], that contain a 

characteristic cross-β motif [187,208-224], they can 

be visualized using the fluorogenic stain thioflavin T 

[158,187,225-239] or via vibrational spectroscopy 

[236,240-251]. As with any other ligand or binding 

agent, the rotation of the bound form is more 

restricted than that of the free form (which is largely 

what makes it fluorogenic), and precise intensities of 

thioflavin T fluorescence depend on the location and 

conformation(s) to which the thioflavin T is bound 

[227-229,252-269] and in some cases on the 

presence of interferents [270].

.

While the proteolytic specificity of nattokinase, as an

alkaline serine protease [44,73,273], is surprisingly

underexplored, beyond a broad similarity to that of

plasmin [44,274] (and nattokinase can even degrade

spike protein [275] and certain ‘classical’ amyloids

[276-278]), the question arises as to whether or not

nattokinase can degrade the amyloid ‘fibrinaloid’ form

of microclots. The purposes of this paper are (i) to

describe an efficient, quantitative, automated

microscopic method that can be used to determine the

size and number of amyloid microclots and any

time-dependent changes therein, and thus (ii) to

assess any such nattokinase-induced degradation of

the microclots, concluding that nattokinase can indeed

degrade fibrinaloid microclots effectively. The

therapeutic implications of this are discussed.

2 Materials and methods

2.1 Assay method

In vitro microclots were made by mixing 45  μL

commercially obtained fibrinogen (Sigma catalogue

number 9001-32-5, at a final concentration of 2

mg/mL) with 5 μL bacterial LPS (Sigma product code

L2630-10MG) and used at a final concentration of 1

ng/mL were incubated at 37 ºC for 15 min. 25 μL

were removed and replaced with 25 μ L thrombin

(Sigma, final amount 14U) and incubated at 37 ºC for

a further 15 min. 3 μL were removed and replaced

with 3 μL of the fluorogenic amyloid dye, Thioflavin T

(ThT) (final concentration: 0.03 mM) and incubated

for 20 min (protected from light) at room temperature.

Following incubation, 10 μ L of the recombinantly

produced nattokinase at different concentrations / PBS

(control) were added. This was then followed by

immediately pipetting 15 μL of assay sample onto a

15-well slide ‘angiogenesis’ glass bottom plate used

without a lid (Ibidi: https://ibidi.com/chambered

-coverslips/245--slide-15-well-3d-glass-bottom.html),

reproduced in Figure 1, and without shaking (cf.

[156,279-291]). The excitation wavelength band for

ThT was set at 450 nm to 499 nm and the emission at

499 nm to 529 nm. Samples were viewed using Gen5

software on an Agilent BioTek Cytation 1 Cell Imaging

Multimode Reader, essentially following the protocol

developed and described by Dalton and colleagues

[193]. The Cytation instrument is an automated

fluorescence microscope with 8-bit intensity resolution

in which an entire, large field of view can be

constructed at high magnification by taking serial

images and moving the stage automatically. With the

4× objective used, each final image (as in Figure 1)

was composed of 1,296 individual images. The typical

file size of a final, stitched .tif image was 19 Mb. Each

experiment was run multiple times, each time being in

triplicate (three separate wells). Other relevant

settings that we optimized for this assay were as

follows: the Cytation 1 temperature was set at 37 ºC,

and images were taken every 41 min for 6 hours. The

colour channel used was GFP 469,525. A fixed focal

height setting, with a bottom elevation of 549 μm and

https://ibidi.com/chambered-coverslips/245--slide-15-well-3d-glass-bottom.html
https://ibidi.com/chambered-coverslips/245--slide-15-well-3d-glass-bottom.html
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0 μm offset was selected. A Z-Stack montage of the

entire well was applied, with a step size of 86.9 μm,

and 12 slices. Samples were analysed using the Gen5

Image Prime 3.13.15 software supplied with the

instrument, and the thresholds for minimum and

maximum object (clots) size that could be detected

were set at 5 and 500 μm, respectively.

Figure 1 lbidi 15-well 3D glass-bottomed microslide as used herein (the incubation system used herein, allowing

imaging from below).

2.2 Recombinant nattokinase

Recombinant nattokinase was produced within the

Liverpool Gene Mill. The nucleotide sequence for

Bacillus subtilis nattokinase (Uniprot Q93L66,

GenBank: AER52006.1) was synthesised by Twist

Bioscience and supplied in the pET28a(+) plasmid.

The sequence was modified to include a C-terminal

poly-Histidine tag for purification, as well as an

N-terminal PelB leader sequence in which the terminal

QPAMA residues are replaced by APOIA, and with a

penta-aspartate linker for targeting to the periplasmic

space [292] plus a ENLYFQ TEV cleavage site and a

further SGS linker prior to the nattokinase sequence

(beginning AQSVPY). The vector was used to

transform chemically competent cells of the RosettaTM

strain of Escherichia coli (Novagen) according to the

method described by Inoue et al. [293]. Transformed

cells were plated on plates of LB-agar (0.5% w/v yeast

extract, 1% w/v NaCl, 1% w/v tryptone and 2% agar)

supplemented with 50 µg/mL kanamycin and 25

µg/mL chloramphenicol. A single colony from the agar

plate was used to inoculate 5 mL of LB broth (0.5%

w/v yeast extract, 1% w/v NaCl, 1% w/v tryptone)

supplemented with kanamycin and chloramphenicol

as described above, for overnight culturing at 37 °C

with shaking. The culture was diluted to an OD600 of

0.05 in 500 mL of LB broth supplemented with

kanamycin and chloramphenicol as described above,

and incubated with shaking at 37 °C. When an OD600
of 0.6 was reached, recombinant protein expression

was induced by addition of 0.75 mM isopropyl β

-D-1-thiogalactopyranoside (IPTG), and the culture

was incubated overnight at 18 °C with shaking. Cell

pellets were harvested by centrifugation at 4,000× for

10 min, and the pellets were resuspended in 50 mL of

a solution of Tris-HCl (pH8) and 10 mM EDTA, and

incubated at 60 °C for 2 hours [294]. The suspension

was centrifuged at 4 °C at 16,000× for 10 min, and

the supernatant was passed through 1 mL of HisPurTM

Ni-NTA resin (Thermo Scientific) to purify

poly-Histidine-tagged proteins. Bound proteins were

eluted using 500 mM imidazole, followed by desalting

and concentration using a PierceTM Protein

Concentrator PES (Thermo Scientific) with 30 kDa

https://www.uniprot.org/uniprotkb/Q93L66/entry
https://doi.org/10.62767/jecacm504.6557
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cut-off. Protein yield was quantified using the PierceTM

Bradford Protein Assay Kit (Thermo Scientific), and

samples were frozen with 10% v/v glycerol until

further use. Inclusion body formation [295] was not

here a significant issue. Figure 2 shows a gel

illustrating the final preparation.

Figure 2 SDS-PAGE of recombinant Nattokinase. F: sample flow-through (unbound proteins); W: fraction of wash

buffer (100 mM Tris, pH 7.5, 150 mM NaCl, 50 mM imidazole); 1-3: purifed fractionsusing elution buffer (100 mM

Tris, pH 7.5, 150 mM NaCl, 500 mM imidazole); C1 & C2: purified samples concentrated through 30 kD cut-off

protein concentrator unit; C3: C1 & C2 samples pooled and further concentrated through 3 kD cut-off protein

concentrator unit.

A kinetic experiment was set up on the Cytation 1 and

the effect of nattokinase on microclots was studied at

final concentrations of 28 ng/μL and 14 ng/μL, using

ThT at a final concentration of 0.005 mM, as the

fluorogenic dye. Measurements were taken every 40

min.

3 Results

3.1 Basic phenomenon, and effect of

concentration of NK and incubation time

To give an indication of the kinds of data obtained in

this study, Figure 3 (left panels) shows three Cytation

images representing clots as stained with thioflavin T

following incubation of fibrinogen plus thrombin plus

LPS (as in [111]) for 6 hours, either with no further

additions (Figure 3A, top), with PBS (Figure 3B,

middle), or after simultaneous exposure to 28 ng/μL

nattokinase.

While we sought to avoid any ‘cherry picking’ in the

past, the great attraction of the present approach is

that the entire sample is imaged (serially) so this issue

is completely avoided. Although not necessarily

obvious to the naked eye, there are variations in pixel

intensity that allow a thresholding to determine what

counts as a clot boundary. Figure 3 also shows the

pixel intensity variation for the images displayed on its

left side; the logarithmic plot in particular makes clear

how much the pixels of larger intensity differed

following the addition of the nattokinase.

The time evolution of these data (Figure 4) shows that

in the absence of nattokinase the clot numbers

increase for an hour or so then decrease slightly before

stabilizing (Figure 4A). When nattokinase is present

the clot numbers decrease after the first time point

and by 2 hours have attained their lowest level, this

being approximately half that of the 14 ng/ μ L

nattokinase (in which the nattokinase level is thus

halved), possibly implying a loss of activity over time.

In Figure 4B we see the dynamics of the clot intensity

https://doi.org/10.62767/jecacm504.6557
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enzyme. Figure 4C shows the time evolution of the

median clot size.

Figure 3 Images of fibrinaloid microclot formation and their removal via nattokinase. Thrombin and fibrinogen

were incubated together with thioflavin T and LPS, and imaged after 6 hours in a Cytation 1, as described in

Methods. Further additions were (A) none, (B) PBS, (C) recombinant nattokinase 28 ng/μL. Bar = 2 mm (2,000

μm).

https://doi.org/10.62767/jecacm504.6557
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Figure 4 Time evolution of (A) clot number, (B) intensity and (C) median clot size during the development of

fibrinaloid microclots and their incubation with nattokinase. Thrombin and fibrinogen were incubated together

with thioflavin T, and imaged in a Cytation 1, as described in Methods. Further additions were none (yellow), PBS

(blue), recombinant nattokinase 28 ng/μL (green), or recombinant nattokinase 14 ng/μL (red). Videos of the

https://doi.org/10.62767/jecacm504.6557
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incubation with PBS and with nattokinase are given in Supplementary Information. Error bars represent standard

deviations of triplicates within a single experiment (and the experiment was repeated on two separate days). The

p-values (paired, one-tailed t-test) at 2 hours were as Table 1:

Table 1 p-values (paired, one-tailed t-test) at 2 hours.

p value

w/o NK and

w/ PBS

w/o NK and w/ NK

at 28 ng/μL

w/o NK and w/ NK

at 14 ng/μL

NK at 14 ng/μL

vs. 28 ng/μL

For median cell count 0.35 0.0003 0.0014 0.055

For median clot intensity 0.004 0.0008 0.015 0.023

For median clot size 0.019 0.008 0.126 0.25

3.2 Effect of flowing conditions, as implemented

by shaking

The above analyses were done online within the

Cytation 1 throughout, and under static conditions.

However, it is known that flow conditions—as would be

the case in blood in vivo—can themselves stimulate

amyloidogenic fibre formations [288-290,296-301]. It

was thus of interest to compare (with individual time

samples added to the Cytation 1), the effect of flow. To

mimic this we used simple shaking (Figure 5). As

indicated (Figure 5), shaking had a significant

influence in decreasing the clot number (Figure 5A)

while increasing the clot size (Figure 5B).

3.3 Using Amytracker dyes instead of ThT

Because it is valuable to have other dyes should one

wish to use multiple wavelengths (as in [117]), we

also assessed the red oligothiophene-class

AmytrackerTM dyes (Ebba Biotech) (see e.g.,

[115,117,119,302-309]). However, these gave highly

anomalous traces in this system, and given that they

did previously stain the fibrinaloid microclots as

mentioned in those references we suspect may have

inhibited the nattokinase, so were not further pursued.

https://doi.org/10.62767/jecacm504.6557
https://ojs.exploverpub.com/


J. Exp. Clin. Appl. Chin. Med. 2024, 5(4), 30-55

Exploration and Verfication Publishing38

Figure 5 Time evolution of (A) clot number, (B) median clot size during the development of fibrinaloid microclots

whilst shaking versus no shaking of the slides. Fibrinogen, thrombin and LPS were incubated together with

thioflavin T, followed by immediate pipetting of 15 μL of assay sample onto a 15-well slide ‘angiogenesis’ glass

bottom plate (as per Figure 1), which was left incubating for 20 mins, 1 hour, 2 hours and 3 hours, in a dark room,

at 37 ºC, in a shaking incubator at 170 rpm. The no-shaking control samples were incubated under the same

conditions but under stationary conditions. Slides were then imaged on the Cytation 1, using the GFP filter block,

and the appropriate exposure settings. The p-value (paired, one-tailed t-test) for the difference in median clot size

is 0.01. The experiment was duplicated, with each experiment having three technical replicates.

4 Discussion

Fibrinogen, especially its α -chain, is known to be

amyloidogenic [112,310-316], and certain alleles are

especially prone to causing fibrinogen-driven

amyloidoses (e.g., [317-326]). Indeed, our own

studies [111,113,115-118,120,191,197,199,327-333],

and those of others [193,194,202], have

demonstrated via staining with thioflavin T the

authentic amyloidogenesis of fibrinogen to form

fibrinaloid microclots. In the present work, we

describe a medium throughput method for their

quantitative estimation.

Three features stand out from the data in Figure 4.

First, especially in the absence of NK (yellow trace),

the clots increase in both number and size over time

(Figure 4A,4B), illustrating howmicroclotsmay aggregate

to form macroclots, as part of the normal amyloidogenic

process (e.g., [187,227,230,254,312,334-344]), and

such aggregation was increased under flow conditions

(Figure 5). This kind of aggregation may be highly

significant in stroke and myocardial infarctions, where

clots may be far larger (e.g., [345-349]) than the

simple sloughing off of atherosclerotic plaques might

reasonably create. Secondly, the enzyme effectively

decreases the rate and extent of microclot formation,

in rough proportion to the amount of enzyme

(compare e.g., red and green traces at 5 hours). The

lowest intensity point was observed in the interval 2-4

hours, implying a die-off in activity or instability of the

https://doi.org/10.62767/jecacm504.6557
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enzyme over time. This is good, in that untrammelled

fibrinolytic activity may not be of the greatest

therapeutic benefit. Lastly, the median clot size

(Figure 4C) increases briefly then stabilizes. This

reflects the fact that smaller clots will tend to be

degraded preferentially as their surface area per unit

mass is significantly greater than that of larger clots.

(It is not commonly recognised, but if one imagines

two solid spheres, of which one is twice the diameter

of the other, the degradation of a given (i.e., the same)

mass in the two spheres leads to a loss in mass of just

12.5% of the larger sphere when the smaller one is

completely degraded, and a loss in radius of the larger

sphere that is less than 5% of its starting value.

Consequently, although possibly at first glance

surprising, this is, given the traces in Figures 4A and

4B, in fact the result expected for Figure 4C.

The ability to assess the rate of fibrin amyloid

formation and degradation noninvasively is highly

desirable, as it precisely permits studies of the present

type that can then be automated. While still not a

high-throughput approach in the usual sense (flow

clotometry [191,333], albeit using more expensive

instrumentation, is certainly quicker), this does

provide a substantial advance in scoring fibrinaloid

microclot formation that is both fully quantitative and

without undue operator fatigue. This has allowed us,

for the first time, to conclude at least three important

features: (i) the formation kinetics of fibrin amyloid

microclots in whole samples may be imaged

noninvasively in an automated manner, (ii) such

microclots can aggregate over time, and (iii) the

fibrinaloid microclots may be degraded by nattokinase.

This latter has significant therapeutic implications for

those suffering from Long COVID and related

disorders, as NK preparations are widely available

commercially. Our approach also thus allows for the

comparison of different preparations of NK. Future

work could usefully include recombinant serrapeptase

(NK/SP), lumbrokinase (NK/LK) and/or sequence

variants of NK/SP made using the methods of

synthetic biology [350], since both serrapeptase and

lumbrokinase, and even papain [351], also have

fibrinolytic and amyloid-degrading properties

[60,352-363].

Of course these results might also be recognized as

having clinical potential. Given the evidence for the

relevance of fibrinaloid microclots in the aetiology of

Long COVID and other post-infection diseases as

rehearsed above, and the potential shown here of

such enzmes to remove them, a randomized

controlled trial of these kinds of fibrinolytic enzymes

(vs. placebo) seems more than warranted.
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added to the sample containing fibrinogen, LPS,

Thrombin, and ThT as described in the text. Green

annuli are an artefact that may be ignored.
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